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Abstract

An analytical/numerical method has been developed to predict the static thrust
performance of non-axisymmetric two-dimensional convergent-divergent exhaust nozzles.
Thermodynamic nozzle performance effects due to over- and underexpansion are modeled
using one-dimensional compressible flow theory. Boundary layer development and skin
friction losses are calculated using an approximate integral momentum method based on the
classic Kdrm4n-Polhausen solution. Angularity effects are included with these two models
in a computational Nozzle Performance Analysis Code, NPAC. In four different case
studies, results from NPAC are compared to experimental data obtained from subscale
nozzle testing to demonstrate the capabilities and limitations of the NPAC method. In
several cases, the NPAC prediction matched experimental gross thrust efficiency data to
within 0.1 percent at a design NPR, and to within 0.5 percent at off-design conditions.
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Introduction

Supersonic cruise transport aircraft and modern fighter aircraft with supersonic cruise
and dash capabilities use convergent-divergent (CD) exhaust nozzles to attain supersoﬁic jet
velocities necessary for flight in the high speed regime. Over the past several decades,
propulsion nozzle research has led to the development of multi-mission supersonic exhaust
nozzles that can provide efficient operation and meet varying requirements over an extended
flight regime. For example, at supersonic cruise, where the ratio of lift to drag is low and
fuel consumption is high [1], the exhaust nozzle must adjust its area ratio to fully expand
engine flow and provide the optimum external geometry for low drag. For takeoff, climb
to cruise, and air to air combat maneuvers, the exhaust nozzle will need to adjust for rapid
changes in engine pressure ratio and accommodate high mass flow afterburning settings.
Finally, the nozzle may be required to vector or reverse thrust, suppress jet noise, or
maintain a low-observable, compact profile with a minimum effect on radar cross section
and low IR emission.

Because of these diverse requirements, exhaust nozzle design is an integrated, mulu-
faceted effort, and is one of the most important technologies involved in the deVelopmem of
a supersonic aircraft. As such, an understanding of the flow physics and performance
characteristics of CD exhaust nozzles is critical from experimental, theoretical, and
computational standpoints. To meet this need, ongoing research efforts at NASA Langley
Research Center are directed at generating an experimental database for new nozzle
concepts [2], and developing, validating, and applying computational and analytical
methods for the prediction of nozzle performance.

This paper provides a concise discussion of the basic flow physics, off-design
operation, and thrust performance characteristics of convergent-divergent exhaust nozzles.
As part of this discussion, a detailed thermodynamic thrust performance model is
developed over the practical range of nozzle operation, and an approximate integral
momentum boundary layer method is derived from first principles to calculate boundary
layer development and skin friction losses. These models were combined with geometric
loss estimates to develop a computational thrust performance prediction method for two-
dimensional CD nozzles. A comparison of computational results with experimental data is
presented for several test cases and gives valuable insights into the nozzle performance
characteristics discussed as well as illustrating the applications and limits of the prediction

method.



Nomenclature

Symbols

a Speed of sound

a Nozzle flap divergence angle

A 1D flow area

A* 1D sonic flow area

Ag/Ag  Nozzle expansion ratio

B Local nozzle wetted perimeter

Cr Flat plate skin friction coefficient

Crn Thrust efficiency coefficient, Cpn=F/Fj

Crg Gross thrust efficiency coefficient

Cp Specific heat at constant pressure

Cy Specific heat at constant volume

o Boundary layer thickness

o* Boundary layer displacement thickness

D Internal nozzle skin friction drag

ACgrg  Gross thrust efficiency loss decrement, ACEG20
f Boundary layer development function, f=f(x)
F Fixed geometry nozzle thrust

F; Fully expanded, ideal variable geometry nozzle thrust
Fi Ideal convergent nozzle thrust

F Normalized thrust, IA’=F/P07A8

¢ Nozzle divergence angular coordinate

g Boundary layer development function, g=g(x, NPR)
Y Specific heat ratio, y=Cp/Cy

H; Boundary layer shape factor, Hj=0*/8

H; Boundary layer shape factor, Hy=6/6

A Boundary layer development function, A=A(x)
iil Mass flow rate

18 Dynamic viscosity at static temperature

Lo Dynamic viscosity at stagnation temperature
M Mach number

M Boundary layer Mach number

M* Sonic Mach number, M*=1

\% Kinematic viscosity



P Freestream static pressure

Py Stagnation pressure

0 Boundary layer momentum thickness

2] Power function of 8, ©=05/4

r Boundary layer temperature recovery factor
R Ideal gas constant, R=C,-Cy

Re Reynolds number

p Density

p Boundary layer density

p* Sonic density

AS Entropy rise

c Skin friction coefficient compressibility factor
To Flat plate shear stress

T Freestream static temperature, absolute scale
To Stagnation temperature, absolute scale

T Boundary layer temperature, absolute scale

u Boundary layer inner velocity

U 1D flow velocity, boundary layer outer velocity
U* Sonic velocity

Boundary layer viscosity power law exponent

X Curvilinear wall coordinate
y Wall normal curvilinear coordinate
Subscripts

1C First critical (Choke)

2C Second critical

D Design

SE Shock at exit

7, 8,9 Nozzle reservoir, throat, exit stations
oo Ambient

a Angularity effect
f Friction effect

P Pressure

v Momentum

w Wall (y=0)



Abbreviations

Axi Axisymmetric

CD Convergent-Divergent

NPAC Nozzle Performance Analysis Code
NPR Nozzle Pressure Ratio, NPR=P(7/Po.
1D One-Dimensional

2D Two-Dimensional



Convergent-Divergent Nozzle Thrust Performance Characteristics

The control volume used to calculate nozzle thrust is shown in Figure 1. Written in the
streamwise direction, the steady flow control volume equation for conservation of impulse

and momentum states that
Y. Forces = m(Ugyy ~ Ujp) 1)

Figure 1: Nozzle Thrust Control Volume

For the control volume shown, with pressures written relative to ambient and zero

freestream velocity (static conditions),
F-(Pg-P,)Ag=mUg 2)
So, net thrust is a combination of momentum and pressure thrust at the nozzle exit:

F= l’ilUg + (P9 - Pm)Ag
=F, +F, 3)

Now, with mass flow at the nozzle exit defined as
mig =pPgAgUg (4)

and with the introduction of the ideal gas law,

Pg = pgRTg ] B (5)
the nozzle mass flow is given by
. Pg
g =| —— [AgU 6
9 (Rng 99 (6)



Substitution of (6) into (3) nets

Pg 2
F=| —— |AqgU§ +(Pg—-P_)A 7
[RTJ oUg +(Pg )Ag M
But,
Ug = Mgag = Mg+/YRTg (8)
and the thrust equation becomes
F = YPgAgM3 + (Pg - P..)Ag 9)
Next,
P
Py = (P—g)Pm (10)
07
P
P,_.,o = = P07 (11)
(Pm J
Ag
Ag=|—= |A 12
9 ( AS] 8 (12)
so that
A P P P..
F=(P07A8)—9—[7M5[ 2 J+( 2 H (13)
Ag Pg7) \Po7 Po7
When divided by Pg7Ag, equation (13) yields a normalized thrust
fo_ L =é2[YM<,2)( o9 J+(P9 _Pe H (14)
Po7Ag  Ag Po7 Po7 Poy

Now, with Station 7 at the reservoir, the following can be written

P .1 (15)

Py NPR

where NPR is the nozzle pressure ratio, or the ratio of reservoir stagnation pressure to exit

P_9=_131£g=__1_[1>_9) (16)

back pressure. Furthermore,



With the substitution of these definitions and algebraic relations into (14), the control
volume equation for normalized nozzle thrust looks as follows:

2
F_:_I:___:éi% Py +__.l_ 39__1 (17)
Py7Ag  Ag|NPR{ P,/ NPR\ P,
From this equation, the normalized momentum and pressure thrusts can be identified as:
2
F, = _Fy = Ag| W [ Py (18)
Pyp7Ag  Ag| NPR\ P,

A F

Fp=__P_,—_é_9. 1 .?.2_1 (19)
Pg7Ag  Ag| NPR\ P

Equations (17) - (19) can be written as functions of NPR and nozzle geometry alone,
but for now these equations are in a good form to discuss the thrust performance
characteristics of convergent-divergent (CD) nozzles. Figure 2 shows a plot of normalized
nozzle thrust vs. nozzle pressure ratio for a typical fixed geometry CD nozzle and a variable
geometry CD nozzle at static conditions. The variable geometry nozzle changes expansion
ratio with NPR such that exit flow is always fully expanded (i.e., P9=P,,) and thrust is
entirely due to momentum. The fixed geometry nozzle is shown to have a lower
normalized static thrust over the entire NPR range except at the design point
(NPR=NPRp), where Pg=P,, and fully expansion is attained.

Figure 2: Normalized Static Thrust vs. NPR
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Figure 3: Nozzle Thrust Efficiency vs. NPR
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Nozzle Pressure Ratio

A measure of nozzle "thrust efficiency" can be obtained by dividing the normalized fixed
geometry nozzle thrust (F) by the normalized variable geometry nozzle thrust (I:"i). Such a
measure is shown in Figure 3, and more clearly illustrates the performance regimes of a
fixed geometry CD nozzle. At the design nozzle pressure ratio, nozzle exit pressure is
equal to ambient pressure, and flow is supersonic and fully expanded. At off-design
conditions above the design pressure ratio, the CD nozzle enters the underexpanded regime
where exit pressure is higher than ambient pressure. In this regime, the fixed geometry
expansion ratio (Ag/Ag) is lower than the ideal expansion ratio. The nozzle is physically
too small for full internal expansion, and flow must expand to ambient pressure outside the
nozzle as shown in Figure 4. This external, unducted expansion corresponds to a loss of

thrust efficiency.

Figure 4: Underexpanded Nozzle Flow




Below the design pressure ratio, the CD nozzle enters the overexpanded regime. In this
off-design regime, the fixed geometry expansion ratio is too large for complete expansion
to occur at any given NPR. To satisfy pressure boundary conditions in the reservoir and at
the nozzle exit, flow must recompress. At nozzle pressure ratios immediately below
design, nozzle exit pressure is lower than ambient pressure, and recompression occurs
outside the nozzle through a series of shock and expansion fan "cells", shown in Figure 5.
This irreversible compression mechanism is responsible for the loss in thrust efficiency

shown in Figure 3, and defines the off-design "externally overexpanded” regime.

Figure 5: External Overexpansion

Farther below the design pressure ratio, the nozzle expansion ratio is too large for even
internal expansion to persist, and recompression occurs in the nozzle divergent section
through a standing normal shock as shown in Figure 6. While this regime still contains
overexpanded flow, overexpansion occurs inside the nozzle only; flow downstream of the
normal shock is subsonic, and nozzle flow can adjust to ambient pressure at the nozzle exit.
This regime is known as the internally overexpanded or "shock" regime, and occurs
between the choke or first critical nozzle pressure ratio (NPRj¢) and the second critical
nozzle pressure ratio (NPRyc), where the shock is at the nozzle exit.

Figure 6: Internal Overexpansion



As indicated in Figure 3, thrust efficiency decreases at a greater rate below the design
NPR of a nozzle. For externally overexpanded flow (Pgo<P.), equation (19) shows that
pressure thrust is negative; i.e., low pressure acting on the nozzle exit creates a drag. In
addition, pressures along downstream portions of the nozzle divergent walls will be less
than ambient, creating an internal pressure drag. For the case of internally overexpanded
shock regime flow, exit pressure equals ambient pressure, but pressures on the nozzle
divergent walls are still lower than ambient and there is still an internal drag. More
importantly, though, the nozzle also has a subsonic exit velocity and momentum thrust is

significantly reduced.

Figure 7: Critical NPR's vs. Expansion Ratio

10 T
8 Design NPR\
6L External
Overexpansion
NPR
4t
5 2nd Critical NPR\ Ist Critical NPR 5
N S —,LT + Internal
1 - ; + _Y_ Overexpansion
1.0 1.2 1.4 1.6 1.8 2.0
Ag/Ag

Figure 7 shows the first and second critical pressure ratios and the design pressure ratio
plotted against nozzle expansion ratio for the 1D, adiabatic, inviscid flow of air with a
specific heat ratio y=1.4. The 1D approximation shows that the shock regime occurs over
a very small NPR range, and implies that the majority of thrust efficiency drop-off below
the design NPR occurs in the externally overexpanded regime. In reality this is not usually
the case, and the shock regime encompasses a significant part of the NPR range below
design.
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Growth of the shock regime is the result of shock induced boundary layer separation in
the divergent section of the nozzle, illustrated in Figure 8. The predominant effect of this
separation is a reduction in subsonic pressure recovery past the shock. Since exit pressure
is fixed at ambient, the loss in pressure recovery results in higher than normal pressures
inside the nozzle divergent section. The nozzle shock will compensate for this by moving
upstream of its normal (unseparated) location and decreasing in strength. For every
increasing NPR in the shock regime, then, separation causes a lag in nozzle performance
by delaying downstream movement of the nozzle shock. This results in an extended shock
regime and a shifted, higher second critical NPR. For convenience, the shifted second
critical NPR will be denoted as the "shock at exit" NPR, or NPRgg. It is important to note
that the design NPR of a nozzle is independent of off-design, internal behavior, and so a
fixed design NPR and an extended shock regime result in a smaller externally

overexpanded regime.

Figure 8: CD Nozzle with Shock Induced Boundary Layer Separation

In most cases, the major effect of boundary layer separation in a fluid dynamic system is
the resulting change in the system geometry caused by the separation. Translated to a CD
nozzle, this implies that shock induced boundary layer separation delays operating points of
a nozzle by changing the effective nozzle geometry. This is most evident in the extreme
case of a nozzle with fully detached shock induced boundary layer separation, leading to an
important analogy shown in Figure 9 which states that the separation point becomes the
effective exit of a new, lower expansion ratio nozzle. At each NPR, then, the separated
nozzle behaves like a shorter, lower expansion ratio nozzle with a shock at its exit. Thus,
the nozzle will pass through the shock regime as a series of smaller nozzles operating at
their "shock at exit" NPR's. The sum of the infinite number of individual smaller shifts
forms a cumulative shift and determines the actual NPRSE.

11



Figure 9: Separated CD Nozzle Expansion Ratio Analogy

|l
'

As discussed, overexpansion occurs because the nozzle expansion ratio is too large to
maintain full expansion for a given NPR. In essence, then, separation becomes a "variable
geometry" mechanism by which nozzle flow adjusts to a smaller, more correct expansion
ratio. As might be expected, the most notable result of this separation geometry adjustment
is an increase in static thrust efficiency, shown in Figure 10. This increase is the result of
the natural tendency of an overexpanded fluid stream to reach a more efficient balance
between internal energy and momentum, which translates into more efficient expansion and
better conversion of total pressure and temperature into momentum and thrust. In addition,
separation and the associated loss in pressure recovery past the separation point result in
higher static pressures on the nozzle divergent flaps, reducing the internal drag discussed
previously. In the limiting case of full detachment and zero pressure recovery past the
shock, pressures all along the divergent walls will be equal to ambient pressure and the

drag force will be eliminated.

Figure 10: Separation Effects on Thrust Performance

Thrust | .-
Efficiency

Separation Effect

Nozzle Pressure Ratio
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Though separation can be desirable for improving static thrust efficiency, the stability of
shock - boundary layer interaction and corresponding separation is unpredictable in most
cases, and this gives rise to serious design concerns. Asymmetric, unsteady, or transitory
separation can have a detrimental or even catastrophic effect on almost any fluid machinery
device, causing flow vectoring, pressure pulsations, and oscillatory flow patterns. In
addition, though stable separation increases the static thrust performance of CD nozzles,
wind-on aeropropulsive performance may suffer. Internal separation in a fixed geometry
CD nozzle can increase the effective base area of an aircraft afterbody and couple with
external sepération to pump down aft facing surfaces, increasing afterbody drag. Thus,
while static nozzle thrust efficiency increases, aeropropulsive "thrust minus drag”

efficiency decreases, and a net performance decrease is realized.

Gas Dynamic Modeling

To write normalized thrust as a function of NPR, exit Mach number and exit pressure
ratio (P9/P.;) must be known as functions of NPR. To determine these variables, nozzle
performance will be divided into two NPR ranges:

Low End {NPR;c<NPR<NPR;c}

High End {NPR>NPRc}
Recall that the first critical pressure ratio (NPR¢) is the point at which the nozzle chokes,
and the second critical pressure ratio (NPRyc) is the limiting point in the internally
overexpanded regime at which a shock is at the nozzle exit. This second critical pressure
ratio refers to an "ideal” case, and not the separation shifted, "shock at exit" NPR.

Proceeding with the analysis, the first and second critical pressure ratios can be
determined with 1D flow relations as follows. First, knowing Pg=Pc at the first critical

pressure ratio, a simple algebraic relation can be written

1 P, Py Pg Py

== -9 (20)
NPRic Po7 Po7  Pgo Py

Now, since nozzle flow is isentropic at the first critical pressure ratio, Pgo=Pg7, and

1 _Po
NPRic Py

2I)

13



In terms of local pressure ratio, the area - Mach number relation 1s [3]

y+1

(v—l)'/z 2 2-»
A\ 2 y+1

2] Py
Py Py

With A/A*=Ag/Ag, and after substitution of (21), the area - Mach number relation becomes

(22)

Y+1

(y—ljvz 2 2(y-1)
2 y+1

Y1772 |

(ot ) 1 )y
NPR,c NPR,c

For air with a specific heat ratio y=1.4, equation (23) can be solved for NPRc<1.89 to

Ag
Ag

(23)

give the choke nozzle pressure ratio. Though not important at the moment, the design NPR
of the nozzle (NPRp) can also be determined from (23), since the design point fulfills the
isentropic requirements of the choke point math model (20, 21). For the design condition,
however, (23) must be solved for NPRp>1.89. This double solution corresponds to

subsonic and supersonic solutions of the area - Mach number relation.

Along these same lines, the second critical pressure ratio can be determined by coupling
normal shock relations with the current math model. By denoting static and total pressure
upstream of the shock as P and Py respectively, and the same downstream conditions as P'
and Pg', the following algebraic expression can be written

P P P Py

_— 0 (24)
Po; P Pg Py

Now, flow up to the shock is isentropic, so Pp=Pg7. In addition, flow downstream of the
shock is at ambient pressure, so P'=P... Keeping the static pressure ratio across the shock
written as P'/P, and the static/total pressure ratio upstream of the shock as P/P,

P P. 1 P P
= = =—f— |1 (25)
Py Pyy NPR,c P A\ Py

14



The static/total pressure ratio upstream of the shock corresponds to supersonic flow at the
nozzle exit for the second critical and all subsequent nozzle pressure ratios, since exit Mach
number of the nozzle remains constant above NPRyc. The upshot of this relation is that

the pressure ratio upstream of the shock is simply the inverse of the design NPR; i.e.,

P 1

— = (26)
P, NPRp

and equation (25) reduces to the following:

(7o)
NPR, | P \ NPRp

The static pressure ratio across the shock can be determined through a normal shock

relation, where M is the Mach number upstream of the shock:

B_=—2-’Y—M2 _(Y_—l] (28)
P v+l Y+1

The upstream Mach number can be determined easily using a 1D relation [4] and

equation (26).

X
1 =_I_)_—_-[1+Y__1M2} ¥-1 (29)
NPR, P 2

Solving (29) for M2 and substituting the resulting expression into (28) yields

_x-1
sles) e
P vy+I1{y-1)J{\ NPRp Y+1

Finally, substituting (30) into (27) and performing some algebra results in

-1
4y Y y-1
NPR»¢~ = NPRp{ ————| NPR -1}-—
2¢ Play+npiy-n| P
31)

15



With the critical operating points of the nozzle defined, nozzle exit conditions can now
be calculated, starting with the low end. The low end has already been defined as the
internally overexpanded regime, and is characterized by a standing normal shock in the
divergent section of the nozzle and subsonic velocity at the nozzle exit. In this regime, exit
and ambient pressures are equal and thrust is entirely due to momentum. As such, the

normalized static thrust equation reduces to the following:

2
= L = é?. ﬂ (32)
Py7Ag  Ag| NPR

ri>

So, for the low end, only the exit Mach number must be determined. Knowing the nozzle
has a choked throat, it follows that

ek e

For non-isentropic flow between any points 1 and 2 with no heat or work added [3]

so that

8 _ppf 2o (35)
R Pgo
or,
2oL - AR (36)
Poz

In addition, the Area-Mach Number Relation looks as follows [4]:

v+1
Y-1.,2 2(y=-1)
1+—M
A M, y 2 AS/R
AL M 1+~—7;1M%

37)

By substituting (36) into (37), an adiabatic, non-isentropic, no work flow relation is

obtained for area, Mach number, and total pressure between any two points in flow:

y+1

Y12 [2(v-1)
1+ —M
A _M 2 2 Poy (38)
Ap My 1+YT_1M12 Poy

16



Now, A, could be thought of as a fictitious sonic point of Ag, and A of A7;i.e.,
A2 = A; (39)

From this definition, the following are true:

M, =M =1 @1

M =M} =1 | “2)

and, Py =Py (43)
Pgp = Pgg (44)

When modified with these relations, equation (38) reduces to

*
A3 Po
or,
A% = A*(PO‘»’) 46
7=Ag[ == (46)
Po7

So, by taking advantage of the sonic reference point concept, the area - Mach number
relation (37) has been pared down to a simple expression relating sonic reference areas and
total pressures. Now, (46) can be substituted directly into (34) which yields

edlam
Ag A\ Poy A A Pos A\ Po7

or,
(é.?.][_rii =[ﬁ2)(ﬁ) (48)
Ag APo7) | A3 \ Pog
Noting that
Py _ P - 1 (49)
Py; Py NPR
Equation (48) becomes

(e lw))(7),

17



For any point in compressible flow, isentropic 1D relations give [3]

Y+1

A _11.2 (Hy—le) 2(y-1)
A* M|y+1 2

X
1=[1+Y_1M2] ¥-1
Py 2

The product of the two relations in (51) and (52) looks as follows:

Y+1 2
(i) P12 2”-">[1+ v_—le]
A*\Py) M|y+] 2

Substitution of (53) into (50) results in the following expression:

Y+1

_ - -1/2
f‘i(l ): 1] 2 |2y 1)[1+y lM%}
Ag ANPR) Mg|v+1 )

which can be written as

v+l

;[Hv_—le]“” _(Ay (;J 2 [y
M, 2 Ag A\NPR | y+1

Equation (55) can be rewritten as a quadratic equation for Mg? as follows:

l;—l[M%]2 +M8—é=0

where
Y+1

c- ég( ! ]_g_"z(y-n
Ag NPR /| y+1

Using the quadratic formula, the solution of (56) for Mg2 is

M-l Lo )
y-1 v-1 2 C

(1)

(52)

(33)

(54)

(35)

(56)

(57)

(58)



By performing some algebra and knowing that Mg? must be positive, the end result is

M%:Yl_l{ 1+2(Z:;1)-1jl (59)

Equation (59) can be substituted into (32) to net the complete low end normalized thrust

f=_T =f\.9_[ Y ]( 1 )[ 1+2(7'2'1)—1] (60)
P07A8 Ag 'Y—l NPR C

This analysis was performed with no reference to shock location or strength; shock

equation

losses were written in terms of an entropy rise and represented by a total pressure - area -
Mach number relation. Determining the shock strength and location is a simple matter from
this point. Denoting total pressure upstream of the shock as Py and downstream total
pressure as Py', the following can be written, since flow up to and past the shock is

isentropic:
Po _Poo _Pgo Py _Poo Pw=P09( 1 ) ©61)
Po Po7 P9 Py P9 Py Py \NPR
Substituting equation (52) for Pyo/Pg yields
P 1 _— 1
201+ Lhag 1) (62)
Py 2 NPR

Once the total pressure ratio across the shock is determined, using (59) for Mg2, the
upstream Mach number can be found using a normal shock relation in the form [4]

X

Py | 2

1
PO 1+—Y—2‘—'M2

Y+1 Y+1
Finally, using (51) with A*=Ag, the area at which the shock occurs is found as

Y+l

A=ls8 L[HY—'IMZJ 20D L (69)
M|y+1 2

With knowledge of the nozzle geometry, the streamwise location of the shock can be
determined from the shock area.

19



Now that the low end has been covered in detail, attention can turn to evaluating the
high end. In this NPR range, the exit Mach number is constant and is the same as that at
the second critical pressure ratio upstream of the exit shock. So, the remaining unknown in
the normalized static thrust equation (17) is the exit pressure ratio, Pg/P... This ratio can be
determined as a simple function of NPR as follows. First, an algebraic relation can be

written in the form

ﬁ-— Pg Pg7 (65)
P. P07 P.

Now, Pg7/P.. is the NPR, and Pg/Pg7 is simply the pressure ratio corresponding to the exit
Mach number. However, from (26), this ratio is known to be the inverse of the design
NPR. Modified with this information, the relation is

Py _ 1 NPR

NPR = (66)
P, NPRp NPRp
and the normalized high end thrust equation becomes
2
fo_f Aoy My F 1 | 67)
Py7Ag Ag|NPRp {(NPRp NPR

Equation (29) can be used to give exit Mach number as a function of the design NPR.
When substituted into (67), the resulting normalized high end thrust equation looks as

follows:

g F _Agl 2v 1 1 __?ﬁ__l oo
P07A8 AS Y- 1 NPRD NPRD NPRD NPR

(68)

From this equation, normalized momentum and pressure thrust can be identified as:

-1

g oo By _Agf 2y | 1 L)y (69)
V' Py;Ag  Agly—-1ANPRp )|{NPRp
F.= Fp ELC) SR TR (70)
P~ PyyAg Ag|NPRp NPR

20



Note that the normalized momentum thrust is simply a function of the nozzle geometry,
i.e., Ag/Ag and NPRp, and does not change with NPR. Normalized pressure thrust,
however, varies with NPR, subtracting from the momentum thrust for NPR<NPRp
(overexpansion) and adding to the momentum thrust for NPR>NPRp (underexpansion).

The next step in this analysis is to determine the thrust of an ideal, fully expanded,
variable expansion ratio nozzle such that a fixed geometry thrust efficiency can be defined,
where the thrust efficiency coefficient is simply the ratio of normalized thrust to normalized
ideal thrust:

[ F
F _\PypAg) F :
Cpp=—=>1"8/_ 7 (71)
Fn Fl [ Fl ] Fl
Po7Ag

Going back to (17), with Po/P..=1 for fully expanded flow, the normalized thrust equation
looks as follows, where F is replaced by F; to denote the ideal, variable geometry nozzle
thrust:

2
Fi _Ag|YMj (72)
Py7Ag  Ag| NPR

In this case, both the expansion ratio Ag/Ag and exit Mach number are functions of NPR.
For air with y=1.4, equation (23) can be used to determine the design expansion ratio for
any NPR above 1.89; for NPR's below 1.89, no "on-design" CD nozzle exists, and that
range must be addressed separately. For now, however, the relation in (23) can be
substituted into (72) to give

(7—1]‘/2( 2 Y2iy-n)
2
2 v+l >[7M9} (73)
NPR
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Equation (29) can again be used to determine exit Mach number. When (29) is substituted
into (73), the variable geometry normalized thrust equation becomes

) ¥+ ] '
(Y ) 1JV 2 D v-1 y-1
goo_Fi |12 T 1 ]72_7 (__1_)'7_1
' PyrAg \/ | y-1  |LNPR y-1]\NPR
S L I |
(NPR)

(74)
Because no "on-design" CD nozzle exists below NPR=1.89, a convergent nozzle must
be used to determine an ideal nozzle thrust. In this case, the control volume model is still
valid and simplified, since a convergent nozzle has an expansion ratio Ag/Ag=1. For the
convergent nozzle, the normalized thrust equation looks as follows, where F¢; denotes the
ideal convergent nozzle thrust:

. 2
FCl - [ YM9 (75)
Pg7Ag | NPR

For air with a specific heat ratio of y=1.4, a convergent nozzle chokes at NPR=1.89.
Below NPR=1.89 there is always subsonic flow and exit and ambient pressures are equal.
In light of this, the simple 1D relation in (29) can be used to determine exit Mach number.
Modified with this relation, the normalized convergent nozzle thrust equation becomes

1
F; {1]27 [117_1 76
Py7Ag LNPRJ y-1]\NPR

Now that the equations governing nozzle thrust performance over the low and high end

regimes have been derived, it is important to note that, in most cases, the second critical
NPR is so low that the low end regime need not be considered from a modeling standpoint.
In addition, shock induced separation effects in a real nozzle dramatically alter and extend
the low end regime into the NPR range where thermodynamics are governed by the high
end model. Thus, for most nozzle applications, nozzle performance can be represented by
high end thrust equations alone. Exceptions to this generalization are high expansion ratio
nozzles with shallow divergence angles. Such nozzles have a wide, separation free low
end regime and the second critical pressure ratio may fall into a range of practical interest.
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Nozzle Thrust Performance: Loss Effects

The analysis performed thus far has resulted in a model for nozzle thrust efficiency
based on the thermodynamics and gas dynamics of energy conversion in a fluid stream.
Inefficiencies predicted by this model are not due to loss effects, but rather, are the physical
thermodynamic result of expanding flow in a fixed geometry duct over a range of non-ideal
pressure ratios. Since this model was developed assuming the 1D, adiabatic, isentropic
flow of an ideal gas, real life departures from this ideal model are thereby due to non-1D
and secondary flow effects, heat conduction effects, frictional and boundary layer effects,
geometry induced loss mechanisms (internal wave radiation), and real gas effects.

Over the entire range of nozzle operation, loss effects cannot be modeled in a simple
fashion. However, at the design point of the nozzle, flow is fully expanded and most
closely resembles that predicted by the 1D model. At this condition, dominant loss effects
can be readily and accurately predicted. As will be seen, losses calculated at the design
NPR can be extended to other off-design, high end NPR's. Though such losses are not
applicable to low end NPR's, this regime need not be modeled in most cases as discussed.

To include loss effects in the thermodynamic thrust performance model, it is first
necessary to break nozzle thrust efficiency down into its momentum and pressure portions.

Cpp = P 77

Fn F; F, (77)
In a similar fashion, a gross thrust efficiency coefficient, that is, one that includes losses,
can be defined, where the normalized momentum and pressure thrust with losses are

denoted by primed quantities:

E (78)

AT

F,+F
F|

Crc =

At the fully expanded design point of the nozzle (i.e., NPR=NPRp) the following is true:

Fp=F,=0 (79)

Cpn=1 (80)
— Pk

CrG =Cgg (81)
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where the peak gross thrust efficiency, C%lé, is the ideal peak thrust efficiency of 1.0

minus losses at peak:
CPE. =1- ACE§, (82)

With these relations, the thrust efficiency and gross thrust efficiency equations become:

F
=% 83
E. (83)
K _E
ChG = & (84)
1
Combined, these two relations give
Al _ pk A~
F, =Cgg Fy (85)

that is, the momentum thrust with losses is simply the ideal momentum thrust multiplied by
the peak gross thrust efficiency. This result is of great importance, for it means that losses
need only be predicted at the design point of the nozzle to model performance in the high
end. Physically, this implies that nozzle losses affect only the momentum portion of
normalized thrust, which was shown previously to be independent of NPR in the high end.
From the peak gross thrust efficiency then, pressure thrust effects determine the actual
thrust efficiency of the nozzle at each high end NPR. Thus, the peak gross thrust
efficiency becomes the effective maximum thrust efficiency of the nozzle from which the
thermodynamic model can predict over- and underexpansion inefficiencies at off-design
high end NPR'’s. With these results, the gross thrust efficiency coefficient can be re-
written as:

CPX F,+F
Crg =———F (86)
1

For comparison between the thermodynamic model and experimental data, a measured
peak gross thrust efficiency can be inserted into equation (86). For an a priori performance
prediction, however, the peak gross thrust efficiency must be determined by estimating the
appropriate loss effects. The simplest such loss effect is angularity, which results from the
non-1D flow of fluid at the nozzle exit. Angularity losses occur when the nozzle geometry
generates non-axial jet velocities, as in the case of a nozzle with a non-zero exit divergence
angle. For a fixed total thrust, components of momentum thrust generated in non-axial
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directions will reduce the axial thrust of the nozzle, and a decrease in thrust efficiency is
realized. For a 2D nozzle with a divergence half angle of o, the effects of angularity can be
determined as follows.

Figure 11: Nozzle Divergence Polar Coordinate System

First, using a polar coordinate system originating from the vertex of the nozzle
divergence angle as shown in Figure 11, the nozzle exit plane can be broken down into a
series of streamtubes, each corresponding to a polar element d¢. Each streamtube can then
be thought of as containing an element of thrust dFy of the total ideal momentum thrust Fy,
where dF, is defined as follows:

d
dF, =F, % (87)

The component of elemental momentum thrust in the axial direction, dFy,, is simply

F cosd)

dF,, =dF, cos¢ = ———d¢ (88)

It follows that the total axial thrust is simply the elemental axial thrusts integrated over the

nozzle exit plane:

F,, = J‘F cos¢d¢

_ F,sino (89)
o
Now, the gross thrust efficiency decrement due to angularity is:
ACpg q = Y222 ;F”a (90)
i
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but at the design NPR, Fi=Fy , and the decrement at peak is:

Fua =1_sinOL

ACBE =1-
FG,x FV a

(2D Nozzle) (91)

Though not necessary for the current analysis, a similar derivation for an axisymmetric

nozzle gives:
1 -cosa

k .
ACEG o = — (Axi Nozzle) (92)
The second loss effect that can be predicted in a nozzle is skin friction drag, though this
loss effect requires a more rigorous analysis than angularity. The internal friction drag of
the nozzle can be determined by integrating the product of the local skin friction coefficient,

dynamic pressure, and wetted perimeter over the nozzle streamwise length run.

L
D = [BC¢($pU”)dx (93)
0

The loss in thrust efficiency due to frictional effects can be obtained by dividing this
internal drag by the ideal nozzle thrust, F;:

D
ACggf = F (94)

1

Including angularity and friction losses, the peak on-design gross thrust efficiency of
the nozzle is predicted to be
k k k
Chg =1- ACEG o« ~ ACkG ¢ ©5)

Nozzle Boundary Layer Development Modeling

In its current state of technology, the science of computational fluid dynamics has
evolved to a level of maturity where CFD can be readily applied and results are widely
accepted. The advent of modern super computers has resulted in the ability to obtain
solutions to the full Navier Stokes Equations that were unimaginable just twenty years ago,
leading to detailed boundary layer predictions and an almost unlimited source of flowfield
information. While this capability greatly increases the depth of the researcher's toolbox, it
also demands an increased commitment; CFD analysis can be time consuming in a first
approach, and in many cases, justifies an separate research effort of its own.
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For many fluid dynamic applications, methods based on the approximate solution of
boundary layer integral conservation laws can yield valid results. These classic methods
are simple in derivation, numerical implementation, and application, and have been shown
to calculate boundary layer development and skin friction drag with a high degree of
accuracy and reliability. In general, however, integral methods are limited to a class of
problems in which flow physics are well understood and detailed flowfield information is
not required. For basic nozzle geometries, the prediction of nozzle thrust performance is
one problem which fits into this category.

Integral methods are based on solutions of the boundary layer integral equation for
conservation of momentum, derived physically by von Kdrmén and mathematically by
Polhausen in 1921. The simplest approximate solution to this equation is the well known
Karmén-Polhausen Method, used to calculate laminar incompressible flows over a flat plate
with zero pressure gradient. Though readily adapted to compressible cases with pressure
gradient, laminar methods of this type are not applicable to nozzle flows where Reynolds
Numbers are too high for laminar flow to persist, and intense turbulence results in
transition Reynolds Numbers that are typically lower than the equivalent flat plate [5].

In 1951, Tucker [6] developed an integral approximation method for calculating the
turbulent boundary layer development in compressible flows, and in 1954, Bartz [5]
derived a method for calculating the turbulent boundary layer development in axisymmetric
rocket nozzles. Both turbulent methods were based on an "analogy" with laminar
boundary layer theory; that is, laminar conservation laws were used to derive the basic
governing equations. Turbulent boundary layer relations (w/U=f(y/8), Ct, etc.) were then
imposed on the laminar model to come up with an analogous turbulent boundary layer
model. Though Tucker was able to verify results from this model with experimental
boundary layer development data, neither author attempted to make or validate skin friction
drag calculations, possibly due to a lack of suitable data. The following is an extension of
the approximate integral momentum method to a non-axisymmetric, two-dimensional
nozzle for the calculation of turbulent boundary layer development and internal performance

losses due to skin friction drag.
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The K4rman-Polhausen integral boundary layer equation for steady flow conservation
of x-momentum is presented in (96), where the x and y axes are the local directions along
and normal to the solid boundary [7].

d 8 5 |:8u}
2 [pu?dy - j (96)
a (J) 7 X0 '[ y y=0

Note that in the following analysis, u is the boundary layer velocity, U is the freestream or
edge velocity, p is the boundary layer density, p is the freestream density, and P is the
freestream pressure, henceforth assumed constant in y through a laminar boundary layer
analogy. As part of this model, flow outside the boundary layer is assumed isentropic and
ID. For this flow, the Euler Equation for conservation of momentum along a streamline
can be written as follows [8]:

dp dU

—_— —pU— 97

dx P dx ©7)

The outer pressure gradient can be imposed on the boundary layer model by substituting

(97) into the integral momentum equation:

3% , U2 8 aud [au]
—[pu®dy - U—Jpudy - pPU—— J —pf — (98)
g ox 0 X0 9 Jy=o

Combining terms under the integral results in

d
dpu? Uapu pUaU dy = - Ju ©99)
ox ox ox 9y Jy—o

0

Next, using the product rule to make the following expansion,

dpu _ 19pu® _ou

ox u ox P ox (160)
the bracketed terms in (99) become:
d 2 pu ( u) pu|dU
=- U l-—||-pU|l === |— 101
) ox [p pU U P p U |ox (101
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Now, use of the product rule to expand the first bracketed term in (101) results in

R e F ) R

Substitution back into the integral momentum equation nets.

6 é
e A R Rt | ()
1-2gy + pU 1-2)4
x Jpul U)¥ TP ol T Y
0 0

)

ou pu
U 1- d
*P axj[ pU

0

Uj| (102)

Making use of the following definitions for the boundary layer momentum thickness,

boundary layer displacement thickness, and wall shear stress [7]:

the boundary layer integral momentum equation reduces to:

9pU? 200 U,
™ ———0+pU > +pUa o*="T,

Dividing through by pU?2, and noting that [7]

T,
fou*

Cs=
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(105)

(106)

(107)
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the integral momentum equation can be written as:

00 1 9pU? IBU(S*] Cs
=4+ | — 222 | ==t
ax [pU2 x U\ 8 2 (109)

El

Finally, since 8=0(x), U=U(x), and pU2=pU2(x), 9/0x becomes d/dx and (109) is:

de 1 dpU? 1duU(d*
—+0 | —5 P +——[§—J ey (110)
dx pU dx Udx\ 6 2

Equation (110) can be put into a simpler form by noting that, from 1D gas dynamics, with
M=U/a as the freestream Mach number [5],

de2=pU2(2—YM2)% (111)
ﬂ=——_—1—d(mij (112)
U (1-M?) A*
Substitution results in
2 _sw/0_
99| M 5/29 2 i(ln-é—)=& (113)
dx 1-M dx A* 2

Results obtained up to this point are based on laminar boundary layer theory. To extend
this model to an "analogous” turbulent boundary layer, a fully developed turbulent
boundary layer with a 1/7-th power law similarity velocity profile (u/U=(y/8)!/7) and a
turbulent flat plate skin friction relationship can be assumed. The local nozzle skin friction
coefficient can then be determined using a Blasius skin friction equation for a turbulent

boundary layer. The Blasius equation given by Eckert [9] is:

c R 1/4
S _0.0228| — | =0.0228| (114)
2 Reg oUS

For a compressible boundary layer, the dynamic viscosity in (114) is a function of
temperature and must be calculated at the surface "wall" temperature. In the case of a heat
conducting compressible boundary layer, this would require a simultaneous solution of the
boundary layer integral energy equation. For cold nozzle flows, however, the simplifying
and reasonable assumption of an adiabatic boundary layer can be made, since subscale
nozzle testing is usually performed over a length of time such that temperature equilibrium
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between flow and the nozzle wall can be attained. Noting that the freestream and boundary
layer temperatures are T and T, respectively, and making the additional assumption of a
similarity boundary layer temperature profile where T/ T = f(u/ U), the energy equation

can be directly integrated to give [7]
T=T+r1-2‘—1[TM2—TM2] (115)

where M = u/ 3 is the boundary layer Mach number and r is the boundary layer
temperature recovery factor, which accounts for temperature increases through viscous
dissipation in the boundary layer. For a compressible turbulent boundary layer with a
Prandtl number of 0.72, r is approximately 0.88 [7].

Aty=0, M=u=0, T =T,,, and (115) gives

T—=(1+r7—”1M2) (116)
T 2

To relate viscosity to temperature in a compressible flow, Schlicting [7] suggests the use of

E_=(~_w) =(_w_) (117)
B \To To

where values of =0.75 showed good agreement with experimental data in the temperature

a simple power law:

range from 360 to 560 °R. From 1D gas dynamics, local temperature is related to
stagnation temperature by [3]

_ -1
l=[I+Y—IM2] (118)
T 2
So,
To T Y 1 AR
Bw | Zw | o (1+rY—M2](1+7—M2] (119)
Ho \ T To 2 2
Substitution into the skin friction coefficient equation (114) gives
1/4
i~ 0.02280 | 2o (120)
2 pUS
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where ¢ is defined as follows:

o= {(1 + rY—z—Mz)(l +%M2J ]
(121)
From the continuity equation,
pUA=p*U*A* (122)
which gives the following:
A *
pU=p*U*(——) (123)
A
leading to the final form of the skin friction coefficient.
: : 1/4
$f - 0.02286 L(i) (124)
2 pr*rU*J\ A*

Substituting the compressible skin friction equation (124) into the integral momentum
equation (113), multiplying that equation by 81/ and noting that

91/4512 _ idem

125
dx 5 dx (125)

the result is:

5/4 2 _ 1/4
407 Sgsi4 | M -07/6-2 —d-(lni)=§(0.0228)o _Bo_ (QJ(f—)
dx 4 -M2 |&x\ A+ 4 p* U* \5 )\ A*

(126)

Note that the boundary layer shape factors Hj=6*/0 and H=06/6 are present in the final
form of the integral momentum equation. These are evaluated as follows. First, using the
ideal gas law with pressure constant through the boundary layer in y, the following can be

written:

— (127)
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With this, equation (115) can be used to rewrite the momentum and displacement thickness

integrals in (104) and (105) as:

(=]

(128)

and,
)
2
1+r(7—’—1)M2 1—(3) -2
2 U U
= 5 ‘ (129)
1+r(u)M2 1—(3)
2 U
0

Finally, with u/U=(y/3)1/7, the integrals become:

-6
RERTEAY

B RN
AT

Due to their complicated form, equations (130) and (131) are best solved using quadrature.

28/ 1\V/7 1\V7
= 1-| =
8 3 2) [ (2) -’

8 =—[b(0)+4b(3/2)+b(8)]= 57T
6 (-]

)

/N
O <

)
dy = j b(y)dy (130)
0

-2

(=}

&* =

0

For these equations, Simpson's Rule gives:

(132)
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RRTEEE

&* = %[C(O) +4c(8/2)+c(d)]=

N |

With the following substitution

277
7&=X(x)=1+r(l§l)M2[l—(1) ]=1+0.1797r(7_1)M2 (134)

2

o8

the shape factors are:

N -1/7 T
s T2

T 177771
H, LT -1 ~17.5668 A (136)
2 2

177
1—(%) :l ~14.6390 A —10.6071 (135)

6 2

Finally, with the following functional definitions,

_5|M?-H -2 d( _A__j
£(x) [—-———1 e ]dx In— (137)
' 1
=3 Mo L(_A_)“
g(x,NPR) 4(0.0228)6[[p*U*](H2J v } (138)
0=9"* (139)

the integral momentum equation can be written in a compact form.

?— +f(x)® = g(x,NPR) (140)

Equation (140) is a first order, linear, nonhomogeneous ordinary differential equation
which sets up an initial value problem when an onset boundary layer momentum thickness
is specified. Several different numerical schemes have been used to solve this problem

with a similar degree of success, including a multistep backward-space (upwind) finite
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difference method, a fourth order Runga-Kutta method, and a fourth order Adams-
Bashforth predictor - Adams-Moulton corrector method.

As mentioned at the beginning of this analysis, the pressure gradient used to calculate
the boundary layer development is based on the inviscid outer flow. Once an inviscid
solution is obtained, the estimated boundary layer displacement thickness can be added to
the inviscid wall geometry and the boundary layer calculation iterated upon until a solution
is obtained that satisfies both the boundary layer model and the pressure gradients imposed
by the boundary layer displacement. Pressure gradient changes due to displacement effects
are generally on the order of 6* itself, so an iterated solution may or may not vary
significantly from the initial, inviscid boundary solution, depending on the nozzle geometry
and displacement thickness development. However, an iterative procedure of the type
discussed is easy to implement and generally converges quite rapidly, so little additional
computational work is required to correct for displacement effects.

Code Development and Application

The boundary layer integral momentum method derived above was combined with
thrust performance calculations and integrated into a prediction program NPAC, which
stands for Nozzle Performance Analysis Code. Results presented in this paper were
obtained using a 4th order Runga-Kutta method embedded in an iterative boundary layer
displacement correction scheme to solve the integral momentum equation and calculate
boundary layer development and skin friction drag. For this study, NPAC was run on a
Digital Equipment Corporation Alpha 3000 workstation in interactive mode.

The non-axisymmetric nozzle geometries used in this analysis and the data presented in
this discussion originated from sub-scale nozzle testing conducted at the NASA Langley
Research Center 16 Foot Transonic Tunnel Complex over the past 20 years. Propulsion
test facilities at this complex use a high pressure air supply system with a series of
reservoirs, valves, filters, and heat exchangers to provide clean, dry airflow at a constant
total temperature of about 530 °R and mass flow rates up to 30 Ibm/sec at atmospheric back
pressure. Details of a typical propulsion simulation system are shown in Figure 12.
Nozzle air flow rates are calculated based on pressure and temperature measurements in a
calibrated multiple critical venturi system located upstream of the propulsion simulation
model. Forces and moments generated by the nozzle are measured by a six-component
strain-gauge balance mounted on the propulsion model centerline and corrected to
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calibration standards. Stagnation conditions are measured by pitot pressure rakes and
thermocouple probes. Reference [10] provides further details of the test facilities at the

16 Foot Transonic Tunnel Complex.

Figure 12: Propulsion Simulation System

Choke Plate

Test Nozzle

_ Total Pressure
Flexible Bellows Total Temperature
Instrumentation

For this discussion, four different nozzles were analyzed and results compared to
experimental data to show both the validity and the limitations of NPAC. All nozzles were
non-axisymmetric, two-dimensional, convergent-divergent nozzles with nominal throat
areas (Ag) ranging from 2.50 to 4.32 in? and expansion ratios (Ag/Ag) ranging from 1.09
to 1.80. For analysis, the centerline length of each nozzle was broken down into 2000
intervals of approximately 0.005 in. each in length. Each interval was projected to the
nozzle channel contour to determine the local Runga Kutta step size (Ax;) which was then
halved to provide starting (x;-Ax;), intermediate (xj-Ax;/2), and calculation (x;) points for.
the fourth order Runga Kutta solution. It is important to note that the Runga Kutta solution
was largely unaffected by changes in interval size, and that size was chosen primarily to
obtain proper resolution of the nozzle geometry for wetted area calculations.

At the appropriate design NPR, boundary layer development calculations were started
downstream of the propulsion simulation system choke plate with an assumed zero
thickness onset boundary layer. Boundary layer displacement thickness corrections were
made to the inviscid nozzle geometry until the boundary layer displacement thickness
development converged to machine accuracy. At that point, skin friction drag calculations
were made over the full length of the nozzle flaps and sidewalls beginning at the nozzle
entrance. The skin friction estimate was combined with the geometric angularity loss
calculation to predict the peak gross thrust efficiency of the test nozzle. From that point,
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the thermodynamic thrust performance model was used to determine over- and
underexpansion effects at off-design nozzle pressure ratios.

Case 1

The nozzle studied in Case 1 was tested by Mason, Putnam, and Re [11], and has a
nominal throat area of 4.3106 in2, a divergence angle of 1.21°, an expansion ratio of 1.09,
and a corresponding design NPR of 2.97. Geometry details are shown in Figure 13. This
nozzle was used as part of an investigation to determine the effects of throat contouring on

2D-CD nozzle static internal performance.

Figure 13: Case 1 Nozzle Geometry. Dimensions in inches.
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The calculated boundary layer development for this nozzle is presented in Figure 14
after one iteration (inviscid pressure gradient), and after the last iteration (displacement
corrected pressure gradient). The only difference in the boundary layer development in the
two cases is at the nozzle entrance, where the corrected pressure gradient resulted in a
slightly thinner boundary layer due to displacement effects in the subsonic "flat plate”
instrumentation section upstream of the test nozzle. This initial difference is seen to be of
no consequence further downstream, where the boundary layer development is the same
for the inviscid and corrected cases. As observed by Bartz [5], the nozzle boundary layer
reaches a minimum thickness slightly upstream of the nozzle throat and growth in the
divergent section of the nozzle is nearly linear. Other nozzle cases investigated in this

analysis displayed similar boundary layer development.
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Figure 14: Calculated Turbulent Boundary Layer Development for Case 1.
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Convergence of the boundary layer displacement thickness development under the
iterative correction scheme is shown in Figure 15, where L., and L norms of the residual
vector are plotted against iteration number. Note that the residual vector consists of
components representing the residual at each calculation point along the nozzle length.
The correction scheme is seen to converge to machine accuracy in less than 50 iterations.

Other nozzle cases discussed in this paper displayed similar convergence behavior.

The gross thrust efficiency prediction for the Case 1 nozzle is compared to experimental
data in Figure 16 and shows excellent agreement throughout the NPR range tested. Peak
thrust efficiency was predicted to within 0.1 percent, and the NPAC prediction agrees with
all data to within the measurement system precision (about 0.5 percent). Losses predicted
by NPAC at peak were as follows: ACgg =0.011, ACEg,o=0.

Figure 16: Predicted and Experimental [11] Thrust Efficiency for Case |
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Case 2

Experimental results for the 2D-CD nozzle investigated in Case 2 are discussed by
Berrier and Re in [12]. As shown in Figure 17, this nozzle has a nominal throat area of
4.3262 in2, a divergence angle of 5.38°, an expansion ratio of 1.25, and a corresponding
design NPR of 4.22. This particular nozzle was used as part of a test program to evaluate
the effects of several geometric parameters on nozzle internal performance.
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Figure 17: Case 2 Nozzle Geometry. Dimensions in inches.
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For Case 2, the gross thrust efficiency prediction is compared to experimental data in
Figure 18. Once again, there is good agreement throughout the NPR range shown, and
peak thrust efficiency fell between repeat experimental data points at NPR=4.25. For this
nozzle, NPAC predicted a peak gross thrust efficiency of 0.991, with a loss breakdown of
ACEG,=0.007 and ACEG o=0.002.

Figure 18: Predicted and Experimental [12] Thrust Efficiency for Case 2
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Case 3

The nozzle used in Case 3 has a nominal throat area of 4.3172 in2, an expansion ratio of
1.797, a corresponding design pressure ratio of 8.78, and a steep divergent flap angle of
11.01°. This nozzle was tested by Hunter [13] to investigate passive shock - boundary
layer interaction control concepts. Specific details of the nozzle internal geometry are

presented in Figure 19.

Figure 19: Case 3 Nozzle Geometry. Dimensions in inches.
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Unlike previous cases, the thrust efficiency prediction for Case 3 in Figure 20 shows
less favorable agreement with experimental data over the entire NPR range tested. NPAC
did predict the peak gross thrust efficiency coefficient and modeled off-design performance
almost exactly down to NPR= 5.0. Below this NPR, though, the measured gross thrust
efficiency rose higher than the NPAC prediction, and the difference increased at lower
NPR's. Such behavior might seem puzzling at first, since losses measured at the design
NPR should not change at off-design high end NPR's, and would certainly not decrease at
the rate seen in experimental data. As discussed earlier, however, one mechanism can
significantly alter off-design nozzle performance and would increase thrust efficiency:
boundary layer separation. Experimental off-design internal pressure data for the Case 3
nozzle are presented in Figure 21, and show strong evidence of shock induced separation
with little or no downstream static pressure recovery in the divergent section of the nozzle
for NPR's between 1.8 and 5.0. Above NPR=5.0, the nozzle was shock free, and thus
was performing as the NPAC model would predict.
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Figure 20: Predicted and Experimental [13] Thrust Efficiency for Case 3
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It is interesting to note that between NPR's 1.8 and 2.4, experimental gross thrust
efficiency data followed the same trend as the NPAC prediction, though it was shifted to
lower NPR's by ANPR=1.0. This supports the notion of an NPR range shift discussed
previously, and indicates that a large portion of that shift occurs at lower NPR's, where the
nozzle shock is further upstream and more dramatic changes in the effective nozzle

geometry can occur through separation.

Note that for Case 3, the predicted gross thrust efficiency at peak was 0.986, with
associated losses of ACgg, =0.008 and ACFg,q=0.006.

Case 4

The final nozzle studied in this analysis was tested by Capone and Berrier [14] as part of
a wind tunnel experiment on a 1/10-scale, twin engine F-18 prototype aircraft model, and is
a 2D-CD nozzle with an expansion ratio of 1.15, a design NPR of 3.46, and a nominal
throat area of 2.50 in2. Details of the nozzle geometry are presented in Figure 22. Note
that this nozzle had a cutback outside sidewall and an extended nozzle inter-fairing on the
inside sidewall, and thus was not truly a 2D nozzle along its entire length. The geometry
shown in Figure 22 is defined by the nozzle upper and lower flaps and does not take

sidewall variations into account.

Figure 22: Case 4 Nozzle Geometry. Dimensions in inches.
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The thrust efficiency prediction for this nozzle is shown compared to experimental data
in Figure 23. In this last case, the NPAC prediction does not match experimental data very
well. Most of the thrust efficiency data at and below design is within a 0.5 percent
measurement system precision band around the NPAC prediction, but previous cases have
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demonstrated that agreement should be much better than that quoted limit. In addition,
experimental gross thrust efficiency was much higher than the NPAC prediction at
underexpanded NPR's. Regardless of exact levels, however, there is a notable NPR shift
between the NPAC thrust performance curve and experimental data over the entire NPR
range tested, and a closer look at the data shows that the nozzle reached a peak thrust
performance level at about NPR=4.5, approximately 1 NPR higher than the ideal peak. It
is apparent that physics outside of the realm of the NPAC gas dynamics / integral

momentum boundary layer model were present in this case.

Figure 23: Predicted and Experimental [14] Thrust Efficiency for Case 4
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The flow physics missing from the NPAC model in this last case can be linked to two
relatively simple factors: the cutback outside sidewall, and the twin engine configuration.
The cutback sidewall would have the effect of increasing the effective expansion ratio of the
nozzle and shifting peak performance to a higher NPR, while the twin engine configuration
would cause interaction effects between the two nozzle jets. Because of the complicated jet
plume structure at above-design underexpanded NPR's, interaction effects are intense in

this range and can result in a dynamic "coupling” of the two jets, in which case the twin jet- -

configuration behaves much differently than two isolated single jets. Though this
mechanism generally increases thrust efficiency, it can result in stability and aeroacoustic

fatigue problems.
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Conclusions

In this paper, the basic flow physics and thrust performance characteristics of

convergent-divergent exhaust nozzles were discussed. From this point, thermodynamic

relations governing nozzle internal performance were derived using one-dimensional gas

dynamics, and an approximate integral momentum boundary layer method was developed

based on the classic Kdrman-Polhausen solution to calculate boundary layer development

and skin friction losses. Together with angularity effects, these models were written into a
computational code (NPAC), and used to predict the static thrust performance of 2D-CD

nozzles. To demonstrate the prediction method, computational results were compared to

experimental data in four case studies. Important conclusions are as follows.

1.

The NPAC method showed excellent agreement with experimental data in predicting
the peak gross thrust efficiency of 2D-CD nozzles for basic 2D geometries (three out
of the four cases studied to within 0.1 percent). This leads to an important follow-on
conclusion relating the physics of nozzle internal flows to the physics represented in
the NPAC model; namely, losses in 2D-CD nozzles are due primarily to skin friction
and angularity. Two-dimensional nozzles are generally acknowledged to have lower
peak gross thrust efficiencies than axisymmetric nozzles of the same expansion ratio
and throat area, but in the past, the general hypothesis has been to attribute these
additional losses to the existence of corner flows. The current analysis suggests that
these secondary flows, if they exist, have a minor effect on thrust performance, and
indicates that lower peak gross thrust efficiencies seen in 2D nozzles are most likely
due to an increase in wetted area (for the same 1D flow area, a square duct has
approximately 1.13 times more wetted perimeter than a circular duct).

For low expansion ratio nozzles (Ag/Ag=1.09, 1.25) with shallow divergence angles
(o=1.2°, 5.4°), the NPAC thrust performance prediction showed excellent agreement
with experimental data throughout the entire NPR range. Differences between the
predicted gross thrust efficiency and experimental data were generally well within the
approximate 0.5 percent precision limit of the experimental measurement system.

The NPAC gross thrust efficiency prediction matched experimental data almost exactly
for a high expansion ratio nozzle (A9/Ag=1.80) with a steep divergence angle (0.=11°)
from underexpanded conditions down to overexpanded NPR's at which internal shock
induced boundary layer separation began to affect nozzle performance. The separation
had a notable impact on nozzle performance, and resulted in a significant increase in
off-design gross thrust efficiency over what the thermodynamic model predicted.
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4. For a twin jet configuration with cutback outside nozzle sidewalls and an extended
nozzle inter-fairing, the flow physics and nozzle geometry assumptions represented in
the NPAC model were not suitable to correctly predict nozzle thrust performance. The
quasi-2D nozzle geometry and dynamic coupling of the two jets resulted in different

thrust performance characteristics than would be predicted for an isolated 2D nozzle.

From these conclusions, some important points can be made. First, the NPAC model
can accurately predict the static internal thrust performance of basic, isolated 2D-CD
nozzles. For cases in which shock induced boundary layer separation dominates off-
design performance, the NPAC prediction cannot account for separation effects, but is
valid for externally overexpanded, design, and underexpanded NPR's. Though these two
points define the basic capabilities and limitations of the NPAC method, they in no way
impose limitations on its application. As was seen in this discussion, one of the most
powerful uses of the NPAC method lies in interpreting experimental data. By fully
understanding the fluid mechanics, thermodynamics, loss effects, and physics represented
in the NPAC model, a comparison of the NPAC prediction with experimental data can lend
valuable insight into the fundamentals of nozzle thrust performance, and can help explain
why a particular nozzle might perform as it does. So, disagreement between the NPAC
prediction and experimental data in some cases may be as valuable as agreement in other
cases.

Though NPAC is not meant to compete with more powerful CFD codes, the NPAC
method is a feasible alternative for nozzle performance modeling when only thrust
efficiency or boundary layer development predictions are necessary. In some cases, the
simplicity, ease of implementation, and quick convergence of NPAC may make this a more
suitable analysis method. In any event, NPAC is a good companion analysis tool to CFD
codes both as a fundamental prediction method for interpreting CFD results, and also as a

stand alone, independent fluid dynamic model.
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